Wunderland Kalkar, a
children's theme park in Dusseldorf, Germany attracts over 300,000 people every
year. The park has over 40 rides, a hotel and a restaurant on site, so it may
come as a surprise that the attraction was once an unused nuclear power plant. Over
time places and technologies have to change in order to keep up with user
demand, especially in industry.
Here
Nick Boughton, sales manager at industrial
systems integrator, Boulting Technology discusses how switchboards need to
adapt to keep up with increased energy demands.
The future of electricity
In
the UK, the majority of electricity comes from large, centralised power plants.
Although this approach enables economies of scale in the energy sector, it
means that customers, particularly those within inner cities depend on
long-distance transmission to receive power.
In
a bid to reduce energy costs and improve reliability, customers are turning to local
energy generation — power that is generated in underutilised spaces such as
rooftops, landfills and empty car parks.
Local
energy generation reduces costs and improves the overall efficiency of the
power system. It minimises line losses and extends the lifespan of existing
transmission infrastructure by minimising wear from overuse. It also creates a
stronger, more resilient network of power in the face of extreme weather, human
error and outsider attacks.
The
benefits of local energy generation are clear for home owners, but commercial
and industrial properties are also starting to explore the alternatives to the
national grid.
The
microgrid is a localised group of electricity sources and loads that normally
operate as part of the national grid, but can disconnect and function
autonomously if necessary.
These
types of grids are maturing quickly within the commercial and industrial
sectors in North America and Asia Pacific, but lack of standards limit them on
a global scale. Having these standards in place would mean that manufacturers
could access a more secure supply, avoiding regular power interruptions that
can cause high revenue losses and long periods of downtime.
Renewables
Renewable
sources currently produce more than 20 per cent of the UK's electricity and
targets set by the European Union mean that this is likely to rise to 30 per
cent by 2020.
Countries
in Europe are building increasing amounts of renewable capacity in order to
reduce their carbon emissions and boost supply security. Last year, Denmark’s
wind farms supplied 140 per cent of the country's demand and Germany received
all of its power from renewable energy sources for an entire day. While these
were planned events, in May 2016, the UK hit the headlines as it had no coal-fired
power stations meeting electricity demand for a short space of time as a result
of the partial failure of a power import cable. It is events like this that
highlight the eventual need for a more long-term market supply.
In
2017, the Scottish government bid to cut
total climate emissions by 66 per cent within 15 years. This is one of the
world's most ambitious climate strategies and is expected to cost up to £3
billion per year to implement. To cut emissions, the Scottish government has
released a renewable energy programme, which includes targets of 40 per cent of
all new cars sold in Scotland to be ultra-low emission and 80 per cent of
Scotland's homes to be heated using low-carbon technologies.
Currently,
solar energy is limited to daylight hours and wind power cannot be harvested
all year round. The only way to guarantee a 24-hour renewable supply is to have
a method of storage.
Leveraging
car and mobile phone developments, modern battery storage systems will soon be
used to store renewable energy. In just a few years' time, battery storage will
be commonplace not just at grid level, but on industrial sites, office blocks
and in the home too.
Intelligent switchboards
Switchboards sit
at the heart of an infrastructure and therefore need to be able to make intelligent
decisions regarding where its power is coming from and going to. The majority
of switchboards are capable of redirecting energy to several sources when
prompted, but there are very few that allow plant or office managers to make
the most of their electricity supply.
The rise of
Industry 4.0 and the Industrial Internet of Things (IIoT) gives hope that facilities
will soon be able to operate autonomously. Smart sensors, programmable logic
controllers (PLCs) and distributed control systems (DCS) are already widely
used in the industry — intelligent switchboards could be the next step.
An intelligent
switchboard should be able to schedule power use, based on the previous
operating times of each application. If it receives power from renewable
sources, it could use these predictions to supply energy back to the grid,
keeping energy costs as low as possible for the owner of the facility. Generally,
electricity is cheaper when consumer demand is lowest, mainly during the night.
If the facility had the ability to store energy, an intelligent switchboard
could also use tariff predictions to make decisions on whether to receive
energy from the grid, or wait until a lower tariff is available.
An intelligent
switchboard would also complement the use of demand-side response — a system
which financially rewards customers for shifting their electricity use at peak
hours. Currently, demand-side response is managed by sending a signal to the
customer when they need to take action. Intelligent switchboards pave the way
for an automated response to this signal, which could include switching to
stored energy during these peak hours.
One thing that
many people don't know about Wunderland Kalkar is that it was never fully
operational as a nuclear power plant. Construction began in 1972 but delays and
fierce protests from locals caused the plant to close down before it was ever
finished. Today, many plant and office managers are also resistant to change,
particularly with energy infrastructure such as switchboards. However,
investigating the benefits of a more intelligent system and making the change
could save them a small fortune in reduced energy bills, better tariffs and
lack of wasted energy.